Перевод: со всех языков на все языки

со всех языков на все языки

Experiments with Steam

  • 1 Bulleid, Oliver Vaughan Snell

    [br]
    b. 19 September 1882 Invercargill, New Zealand
    d. 25 April 1970 Malta
    [br]
    New Zealand (naturalized British) locomotive engineer noted for original experimental work in the 1940s and 1950s.
    [br]
    Bulleid's father died in 1889 and mother and son returned to the UK from New Zealand; Bulleid himself became a premium apprentice under H.A. Ivatt at Doncaster Works, Great Northern Railway (GNR). After working in France and for the Board of Trade, Bulleid returned to the GNR in 1912 as Personal Assistant to Chief Mechanical Engineer H.N. Gresley. After a break for war service, he returned as Assistant to Gresley on the latter's appointment as Chief Mechanical Engineer of the London \& North Eastern Railway in 1923. He was closely associated with Gresley during the late 1920s and early 1930s.
    In 1937 Bulleid was appointed Chief Mechanical Engineer of the Southern Railway (SR). Concentration of resources on electrification had left the Southern short of up-to-date steam locomotives, which Bulleid proceeded to provide. His first design, the "Merchant Navy" class 4–6– 2, appeared in 1941 with chain-driven valve gear enclosed in an oil-bath, and other novel features. A powerful "austerity" 0−6−0 appeared in 1942, shorn of all inessentials to meet wartime conditions, and a mixed-traffic 4−6−2 in 1945. All were largely successful.
    Under Bulleid's supervision, three large, mixed-traffic, electric locomotives were built for the Southern's 660 volt DC system and incorporated flywheel-driven generators to overcome the problem of interruptions in the live rail. Three main-line diesel-electric locomotives were completed after nationalization of the SR in 1948. All were carried on bogies, as was Bulleid's last steam locomotive design for the SR, the "Leader" class 0−6−6−0 originally intended to meet a requirement for a large, passenger tank locomotive. The first was completed after nationalization of the SR, but the project never went beyond trials. Marginally more successful was a double-deck, electric, suburban, multiple-unit train completed in 1949, with alternate high and low compartments to increase train capacity but not length. The main disadvantage was the slow entry and exit by passengers, and the type was not perpetuated, although the prototype train ran in service until 1971.
    In 1951 Bulleid moved to Coras Iompair Éireann, the Irish national transport undertaking, as Chief Mechanical Engineer. There he initiated a large-scale plan for dieselization of the railway system in 1953, the first such plan in the British Isles. Simultaneously he developed, with limited success, a steam locomotive intended to burn peat briquettes: to burn peat, the only native fuel, had been a long-unfulfilled ambition of railway engineers in Ireland. Bulleid retired in 1958.
    [br]
    Bibliography
    Bulleid took out six patents between 1941 and 1956, covering inter alia valve gear, boilers, brake apparatus and wagon underframes.
    Further Reading
    H.A.V.Bulleid, 1977, Bulleid of the Southern, Shepperton: Ian Allan (a good biography written by the subject's son).
    C.Fryer, 1990, Experiments with Steam, Wellingborough: Patrick Stephens (provides details of the austerity 0–6–0, the "Leader" locomotive and the peat-burning locomotive: see Chs 19, 20 and 21 respectively).
    PJGR

    Biographical history of technology > Bulleid, Oliver Vaughan Snell

  • 2 Worsdell, Thomas William

    [br]
    b. 14 January 1838 Liverpool, England
    d. 28 June 1916 Arnside, Westmorland, England
    [br]
    English locomotive engineer, pioneer of the use of two-cylinder compound locomotives in Britain.
    [br]
    T.W.Worsdell was the son of Nathaniel Worsdell. After varied training, which included some time in the drawing office of the London \& North Western Railway's Crewe Works, he moved to the Pennsylvania Railroad, USA, in 1865 and shortly became Master Mechanic in charge of its locomotive workshops in Altoona. In 1871, however, he accepted an invitation from F.W. Webb to return to Crewe as Works Manager: it was while he was there that Webb produced his first compound locomotive by rebuilding an earlier simple.
    In 1881 T.W.Worsdell was appointed Locomotive Superintendent of the Great Eastern Railway. Working with August von Borries, who was Chief Mechanical Engineer of the Hannover Division of the Prussian State Railways, he developed a two-cylinder compound derived from the work of J.T.A. Mallet. Von Borries produced his compound 2–4–0 in 1880, Worsdell followed with a 4–4–0 in 1884; the restricted British loading gauge necessitated substitution of inside cylinders for the outside cylinders used by von Borries, particularly the large low-pressure one. T.W.Worsdell's compounds were on the whole successful and many were built, particularly on the North Eastern Railway, to which he moved as Locomotive Superintendent in 1885. There, in 1888, he started to build, uniquely, two-cylinder compound "single driver" 4–2–2s: one of them was recorded as reaching 86 mph (138 km/h). He also equipped his locomotives with a large side-window cab, which gave enginemen more protection from the elements than was usual in Britain at that time and was no doubt appreciated in the harsh winter climate of northeast England. The idea for the cab probably originated from his American experience. When T.W.Worsdell retired from the North Eastern Railway in 1890 he was succeeded by his younger brother, Wilson Worsdell, who in 1899 introduced the first 4– 6–0s intended for passenger trains in England.
    [br]
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 15 (biography).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co., pp. 253–5 (describes his locomotives). C.Fryer, 1990, Experiments with Steam, Patrick Stephens, Ch. 7.
    PJGR

    Biographical history of technology > Worsdell, Thomas William

  • 3 Hancock, Walter

    [br]
    b. 16 June 1799 Marlborough, Wiltshire, England d. 14 May 1852
    [br]
    English engineer and promoter of steam locomotion on common roads.
    [br]
    He was the sixth son of James Hancock, a cabinet-maker and merchant of Marlborough, Wiltshire. Initially Walter was apprenticed to a watchmaker and jeweller in London, but he soon turned his attention to engineering. In 1824 he invented a steam engine in which the cylinder and piston were replaced by two flexible bags of several layers of canvas and rubber solution, which were alternately filled with steam. The engine worked satisfactorily at Hancock's works in Stratford and its simplicity and lightness suggested its suitability for road carriages. Initial experiments were not very successful, but Hancock continued to experiment. After many trials in and around London, the Infant began a regular run between Stratford and London in February 1831. The following year he built the Era for the London and Brighton Steam Carriage Company. The Enterprise was next put on the road, by the London and Paddington Steam Carriage Company in April 1833. The Autopsy started to run from Finsbury Square to Pentonville in October of the same year and ran alternately with the Erin between the City and Paddington. Hancock's interest in steam road locomotion continued until about 1840, by which time he had built ten carriages. But by then public interest had declined and most of the companies involved had failed. Later, he turned his attention to indiarubber, working with his brother Thomas Hancock. In 1843 he obtained a patent for cutting rubber into sheets and for a method of preparing a solution of rubber.
    [br]
    Bibliography
    1838, Narrative of Twelve Years of Experiments (1824–1836) Demonstrative of the Practicability and Advantages of Employing Steam Carriages on Common Roads, London.
    IMcN

    Biographical history of technology > Hancock, Walter

  • 4 Parsons, Sir Charles Algernon

    [br]
    b. 13 June 1854 London, England
    d. 11 February 1931 on board Duchess of Richmond, Kingston, Jamaica
    [br]
    English eingineer, inventor of the steam turbine and developer of the high-speed electric generator.
    [br]
    The youngest son of the Earl of Rosse, he came from a family well known in scientific circles, the six boys growing up in an intellectual atmosphere at Birr Castle, the ancestral home in Ireland, where a forge and large workshop were available to them. Charles, like his brothers, did not go to school but was educated by private tutors of the character of Sir Robert Ball, this type of education being interspersed with overseas holiday trips to France, Holland, Belgium and Spain in the family yacht. In 1871, at the age of 17, he went to Trinity College, Dublin, and after two years he went on to St John's College, Cambridge. This was before the Engineering School had opened, and Parsons studied mechanics and mathematics.
    In 1877 he was apprenticed to W.G.Armstrong \& Co. of Elswick, where he stayed for four years, developing an epicycloidal engine that he had designed while at Cambridge. He then moved to Kitson \& Co. of Leeds, where he went half shares in a small experimental shop working on rocket propulsion for torpedoes.
    In 1887 he married Katherine Bethell, who contracted rheumatic fever from early-morning outdoor vigils with her husband to watch his torpedo experiments while on their honeymoon! He then moved to a partnership in Clarke, Chapman \& Co. at Gateshead. There he joined the electrical department, initially working on the development of a small, steam-driven marine lighting set. This involved the development of either a low-speed dynamo, for direct coupling to a reciprocating engine, or a high-speed engine, and it was this requirement that started Parsons on the track of the steam turbine. This entailed many problems such as the running of shafts at speeds of up to 40,000 rpm and the design of a DC generator for 18,000 rpm. He took out patents for both the turbine and the generator on 23 April 1884. In 1888 he dissolved his partnership with Clarke, Chapman \& Co. to set up his own firm in Newcastle, leaving his patents with the company's owners. This denied him the use of the axial-flow turbine, so Parsons then designed a radial-flow layout; he later bought back his patents from Clarke, Chapman \& Co. His original patent had included the use of the steam turbine as a means of marine propulsion, and Parsons now set about realizing this possibility. He experimented with 2 ft (61 cm) and 6 ft (183 cm) long models, towed with a fishing line or, later, driven by a twisted rubber cord, through a single-reduction set of spiral gearing.
    The first trials of the Turbinia took place in 1894 but were disappointing due to cavitation, a little-understood phenomenon at the time. He used an axial-flow turbine of 2,000 shp running at 2,000 rpm. His work resulted in a far greater understanding of the phenomenon of cavitation than had hitherto existed. Land turbines of up to 350 kW (470 hp) had meanwhile been built. Experiments with the Turbinia culminated in a demonstration which took place at the great Naval Review of 1897 at Spithead, held to celebrate Queen Victoria's Diamond Jubilee. Here, the little Turbinia darted in and out of the lines of heavy warships and destroyers, attaining the unheard of speed of 34.5 knots. The following year the Admiralty placed their first order for a turbine-driven ship, and passenger vessels started operation soon after, the first in 1901. By 1906 the Admiralty had moved over to use turbines exclusively. These early turbines had almost all been direct-coupled to the ship's propeller shaft. For optimum performance of both turbine and propeller, Parsons realized that some form of reduction gearing was necessary, which would have to be extremely accurate because of the speeds involved. Parsons's Creep Mechanism of 1912 ensured that any errors in the master wheel would be distributed evenly around the wheel being cut.
    Parsons was also involved in optical work and had a controlling interest in the firm of Ross Ltd of London and, later, in Sir Howard Grubb \& Sons. He he was an enlightened employer, originating share schemes and other benefits for his employees.
    [br]
    Principal Honours and Distinctions
    Knighted. Order of Merit 1927.
    Further Reading
    A.T.Bowden, 1966, "Charles Parsons: Purveyor of power", in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Parsons, Sir Charles Algernon

  • 5 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 6 Donkin, Bryan III

    [br]
    b. 29 August 1835 London, England
    d. 4 March 1902 Brussels, Belgium
    [br]
    English mechanical engineer.
    [br]
    Bryan Donkin was the eldest son of John Donkin (1802–54) and grandson of Bryan Donkin I (1768–1855). He was educated at University College, London, and at the Ecole Centrale des Arts et Métiers in Paris, and then served an apprenticeship in the firm established by his grandfather. He assisted his uncle, Bryan Donkin II (1809–93), in setting up paper mills at St Petersburg. He became a partner in the Donkin firm in 1868 and Chairman in 1889, and retained this position after the amalgamation with Clench \& Co. of Chesterfield in 1900. Bryan Donkin was one of the first engineers to carry out scientific tests on steam engines and boilers, the results of his experiments being reported in many papers to the engineering institutions. In the 1890s his interests extended to the internal-combustion engine and he translated Rudolf Diesel's book Theory and Construction of a Rational Heat Motor. He was a frequent contributor to the weekly journal The Engineer. He was a member of the Institution of Civil Engineers and of the Institution of Mechanical Engineers, as well as of many other societies, including the Royal Institution, the American Society of Mechanical Engineers, the Société Industrielle de Mulhouse and the Verein Deutscher Ingenieure. In his experimental work he often collaborated with others, notably Professor A.B.W.Kennedy (1847–1928), with whom he was also associated in the consulting engineering firm of Kennedy \& Donkin.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers 1901. Institution of Civil Engineers, Telford premiums 1889, 1891; Watt Medal 1894; Manby premium 1896.
    Bibliography
    1894, Gas, Oil and Air Engines, London.
    1896, with A.B.W.Kennedy, Experiments on Steam Boilers, London. 1898, Heat Efficiency of Steam Boilers, London.
    RTS

    Biographical history of technology > Donkin, Bryan III

  • 7 Lenoir, Jean Joseph Etienne

    [br]
    b. 1822 Mussey-la-Ville, Belgium
    d. 1900 Verenna Saint-Hildar, France
    [br]
    Belgian (naturalized French in 1870) inventor of internal combustion engines, an electroplating process and railway telegraphy systems.
    [br]
    Leaving his native village for Paris at the age of 16, Lenoir became a metal enameller. Experiments with various electroplating processes provided a useful knowledge of electricity that showed in many of his later ideas. Electric ignition, although somewhat unreliable, was a feature of the Lenoir gas engine which appeared in 1860. Resembling the steam engine of the day, Lenoir engines used a non-compression cycle of operations, in which the gas-air mixture of about atmospheric pressure was being ignited at one-third of the induction stroke. The engines were double acting. About five hundred of Lenoir's engines were built, mostly in Paris by M.Hippolyte Marinoni and by Lefébvre; the Reading Ironworks in England built about one hundred. Many useful applications of the engine are recorded, but the explosive shock that occurred on ignition, together with the unreliable ignition systems, prevented large-scale acceptance of the engine in industry. However, Lenoir's effort and achievements stimulated much discussion, and N.A. Otto is reported to have carried out his first experiments on a Lenoir engine.
    [br]
    Principal Honours and Distinctions
    Académie des Sciences Prix Montyon Prize 1870. Société d'Encouragement, Silver Prize of 12,000 francs. Légion d'honneur 1881 (for his work in telegraphy).
    Bibliography
    8 February 1860, British patent no. 335 (the first Lenoir engine).
    1861, British patent no. 107 (the Lenoir engine).
    Further Reading
    Dugald Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 13–15, 30, 118, 203.
    World Who's Who in Science, 1968 (for an account of Lenoir's involvement in technology).
    KAB

    Biographical history of technology > Lenoir, Jean Joseph Etienne

  • 8 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 9 Stuart, Herbert Akroyd

    [br]
    b. 1864 Halifax, England
    d. 1927 Perth, Australia
    [br]
    English inventor of an oil internal-combustion engine.
    [br]
    Stuart's involvement with engines covered a period of less than ten years and was concerned with a means of vaporizing the heavier oils for use in the so-called oil engines. Leaving his native Yorkshire for Bletchley in Buckinghamshire, Stuart worked in his father's business, the Bletchley Iron and Tin Plate works. After finishing grammar school, he worked as an assistant in the Mechanical Engineering Department of the City and Guilds of London Technical College. He also formed a connection with the Finsbury Technical College, where he became acquainted with Professor William Robinson, a distinguished engineer eminent in the field of internal-combustion engines.
    Resuming work at Bletchley, Stuart carried out experiments with engines. His first patent was concerned with new methods of vaporizing the fuel, scavenging systems and improvement of speed control. Two further patents, in 1890, specified substantial improvements and formed the basis of later engine designs. In 1891 Stuart joined forces with R.Hornsby and Sons of Grantham, a firm founded in 1815 for the manufacture of machinery and steam engines. Hornsby acquired all rights to Stuart's engine patents, and their superior technical resources ensured substantial improvements to Stuart's early design. The Hornsby-Ackroyd engines, introduced in 1892, were highly successful and found wide acceptance, particularly in agriculture. With failing health, Stuart's interest in his engine work declined, and in 1899 he emigrated to Australia, where in 1903 he became a partner in importing gas engines and gas-producing plants. Following his death in 1927, under the terms of his will he was interred in England; sadly, he also requested that all papers and materials pertaining to his engines be destroyed.
    [br]
    Bibliography
    July 1886, British patent no. 9,866 (fuel vapourization methods, scavenging systems and improvement of speed control; the patent describes Stuart as Mechanical Engineer of Bletchley Iron Works).
    1890, British patent no. 7,146 and British patent no. 15,994 (describe a vaporizing chamber connected to the working cylinder by a small throat).
    Further Reading
    D.Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 420–6 (provides a detailed description of the Hornsby-Ackroyd engine and includes details of an engine test).
    T.Hornbuckle and A.K.Bruce, 1940, Herbert Akroyd Stuart and the Development of the Heavy Oil Engine, London: Diesel Engine Users'Association, p. 1.
    KAB

    Biographical history of technology > Stuart, Herbert Akroyd

  • 10 Wenham, Francis Herbert

    SUBJECT AREA: Aerospace
    [br]
    b. 1824 London, England
    d. 11 August 1908 Folkestone, England
    [br]
    English engineer, inventor and pioneer aerodynamicist who built the first wind tunnel.
    [br]
    Wenham trained as a marine engineer and later specialized in screw propellers and high-pressure engines. He had many interests. He took his steamboat to the Nile and assisted the photographer F.Frith to photograph Egyptian tombs by devising a series of mirrors to deflect sunlight into the dark recesses. He experimented with gas engines and produced a hot-air engine. Wenham was a leading, if controversial, figure in the Microscopical Society and a member of the Royal Photographic Society; he developed an enlarger.
    Wenham was interested in both mechanical and lighter-than-air flight. One of his friends was James Glaisher, a well-known balloonist who made many ascents to gather scientific information. When the (Royal) Aeronautical Society of Great Britain was founded in 1866, the Rules were drawn up by Wenham, Glaisher and the Honorary Secretary, F.W.Brearey. At the first meeting of the Society, on 27 June 1866, "On aerial locomotion and the laws by which heavy bodies impelled through the air are sustained" was read by Wenham. In his paper Wenham described his experiments with a whirling arm (used earlier by Cayley) to measure lift and drag on flat surfaces inclined at various angles of incidence. His studies of birds' wings and, in particular, their wing loading, showed that they derived most of their lift from the front portion, hence a long, thin wing was better than a short, wide one. He published illustrations of his glider designs covering his experiments of c. 1858–9. One of these had five slender wings one above the other, an idea later developed by Horatio Phillips. Wenham had some success with a model, but no real success with his full-size gliders.
    In 1871, Wenham and John Browning constructed the first wind tunnel designed for aeronautical research. It utilized a fan driven by a steam engine to propel the air and had a working section of 18 in. (116 cm). Wenham continued to play an important role in aeronautical matters for many years, including a lengthy exchange of ideas with Octave Chanute from 1892 onwards.
    [br]
    Principal Honours and Distinctions
    Honorary Member of the (Royal) Aeronautical Society.
    Bibliography
    Wenham published many reports and papers. These are listed, together with a reprint of his paper "Aerial locomotion", in the Journal of the Royal Aeronautical Society (August 1958).
    Further Reading
    Two papers by J.Laurence Pritchard, 1957, "The dawn of aerodynamics" Journal of the Royal Aeronautical Society (March); 1958, "Francis Herbert Wenham", Journal of the Royal Aeronautical Society (August) (both papers describe Wenham and his work).
    J.E.Hodgson, 1924, History of Aeronautics in Great Britain, London.
    JDS

    Biographical history of technology > Wenham, Francis Herbert

  • 11 Darby, Abraham

    SUBJECT AREA: Metallurgy
    [br]
    b. 1678 near Dudley, Worcestershire, England
    d. 5 May 1717 Madely Court, Coalbrookdale, Shropshire, England
    [br]
    English ironmaster, inventor of the coke smelting of iron ore.
    [br]
    Darby's father, John, was a farmer who also worked a small forge to produce nails and other ironware needed on the farm. He was brought up in the Society of Friends, or Quakers, and this community remained important throughout his personal and working life. Darby was apprenticed to Jonathan Freeth, a malt-mill maker in Birmingham, and on completion of his apprenticeship in 1699 he took up the trade himself in Bristol. Probably in 1704, he visited Holland to study the casting of brass pots and returned to Bristol with some Dutch workers, setting up a brassworks at Baptist Mills in partnership with others. He tried substituting cast iron for brass in his castings, without success at first, but in 1707 he was granted a patent, "A new way of casting iron pots and other pot-bellied ware in sand without loam or clay". However, his business associates were unwilling to risk further funds in the experiments, so he withdrew his share of the capital and moved to Coalbrookdale in Shropshire. There, iron ore, coal, water-power and transport lay close at hand. He took a lease on an old furnace and began experimenting. The shortage and expense of charcoal, and his knowledge of the use of coke in malting, may well have led him to try using coke to smelt iron ore. The furnace was brought into blast in 1709 and records show that in the same year it was regularly producing iron, using coke instead of charcoal. The process seems to have been operating successfully by 1711 in the production of cast-iron pots and kettles, with some pig-iron destined for Bristol. Darby prospered at Coalbrookdale, employing coke smelting with consistent success, and he sought to extend his activities in the neighbourhood and in other parts of the country. However, ill health prevented him from pursuing these ventures with his previous energy. Coke smelting spread slowly in England and the continent of Europe, but without Darby's technological breakthrough the ever-increasing demand for iron for structures and machines during the Industrial Revolution simply could not have been met; it was thus an essential component of the technological progress that was to come.
    Darby's eldest son, Abraham II (1711–63), entered the Coalbrookdale Company partnership in 1734 and largely assumed control of the technical side of managing the furnaces and foundry. He made a number of improvements, notably the installation of a steam engine in 1742 to pump water to an upper level in order to achieve a steady source of water-power to operate the bellows supplying the blast furnaces. When he built the Ketley and Horsehay furnaces in 1755 and 1756, these too were provided with steam engines. Abraham II's son, Abraham III (1750–89), in turn, took over the management of the Coalbrookdale works in 1768 and devoted himself to improving and extending the business. His most notable achievement was the design and construction of the famous Iron Bridge over the river Severn, the world's first iron bridge. The bridge members were cast at Coalbrookdale and the structure was erected during 1779, with a span of 100 ft (30 m) and height above the river of 40 ft (12 m). The bridge still stands, and remains a tribute to the skill and judgement of Darby and his workers.
    [br]
    Further Reading
    A.Raistrick, 1989, Dynasty of Iron Founders, 2nd edn, Ironbridge Gorge Museum Trust (the best source for the lives of the Darbys and the work of the company).
    H.R.Schubert, 1957, History of the British Iron and Steel Industry AD 430 to AD 1775, London: Routledge \& Kegan Paul.
    LRD

    Biographical history of technology > Darby, Abraham

  • 12 live

    ̈ɪlɪv I гл.
    1) жить, существовать, быть живым Was he still living when the doctor arrived? ≈ Он был еще жив, когда приехал врач?
    2) поддерживать существование, жить, кормиться How can anyone live on that salary? ≈ Как можно жить на такое жалование? Syn: subsist
    3) жить;
    существовать;
    обитать to live in a small way ≈ жить скромно to live within (above, beyond) one's income/means ≈ жить (не) по средствам to live on one's salary ≈ жить на жалованье to live on bread and waterпитаться хлебом и водой to live on others ≈ жить на чужие средства to live to be old (seventy, eighty, etc.) ≈ дожить до старости (до семидесяти, восьмидесяти и т. д.) to live to see smth. ≈ дожить до чего-л. live down live in live in misery live in poverty live off live on live out live through live up to Syn: dwell
    4) а) пережить( что-л.) б) остаться в памяти, жить
    5) сожительствовать;
    жить в браке Syn: cohabit ∙ as I live by bread! as I live and breathe! ≈ честное слово! live and learn! ≈ век живи, век учись! to live on airне иметь средств к существованию to live it upкутить, прожигать жизнь II прил.
    1) живой to conduct experiments with a dozen live rats ≈ проводить эксперименты с дюжиной живых крыс Syn: living, alive, quick, animate
    2) деятельный, энергичный, полный сил
    3) а) жизненный;
    реальный;
    животрепещущий live issue б) радио;
    тлв. передающийся непосредственно с места действия (без предварительной записи на пленку или киноленту) a live programрепортаж с места событий ∙ Syn: pertinent
    1., prevalent, prevailing;
    current
    2.
    4) горящий;
    догорающий, непогасший Use tongs to handle those live embers. ≈ Воспользуйся щипцами, чтобы достать догорающие угли. Syn: burning
    2., afire
    1., fiery, blazing, ablaze
    2., aflame, flaming
    5) действующий;
    невзорвавшийся, боевой( о патроне и т. п.) Syn: unkindled, unexploded
    6) а) нетронутый, чистый, неразрабатываемый( о месторождениях, горных породах и т.д.) Syn: unwrought б) чистый (о воздухе)
    7) яркий, нетусклый ( о цвете)
    8) переменный, меняющийся( о нагрузке)
    9) электр. под напряжениемlive wireэнергичный человек, огонь live weight жить;
    существовать - to * to be old /to a great age/ дожить до (глубокой) старости - to * to see smth. дожить до чего-л. - to * in the past жить в прошлом /прошлым/ - he still *s он еще жив - doctors don't think the patient will * врачи думают, что больной не выживет вести какой-л. образ жизни - to * within one's means жить по средствам - to * up to one's income не выходить из бюджета - to * beyond /above/ one's means жить не по средствам - to * happily /a happy life/ жить счастливо - to * in a small way жить скромно /тихо/ - to * to oneself жить замкнуто /уединенно, мало общаясь с другими/ - to * together сожительствовать жить, проживать - to * in England жить в Англии - to * with one's parents-in-law жить с родителями жены /мужа/ выдерживать, не погибать, не портиться - no boat could * in such a storm никакая лодка не могла бы выдержать такого шторма (through) перенести, пережить ( что-л.) - he has *d through three wars он пережил три войны - she *d through a lot of trouble ей пришлось много вынести( в жизни) жить, оставаться в веках, в памяти и т. п. (часто тж. to * on) - his memory will always * память о нем будет жить вечно - his name will * on имя его не умрет (on, upon) питаться (чем-л) ;
    жить (на какие-л. средства) - to * on fruit питаться фруктами - to * on one's salary жить на свое жалованье - to have very little to * on иметь очень мало средств на жизнь - to * on air /on nothing/ жить неизвестно чем, питаться воздухом - to * on /by/ one's wits изворачиваться кое-как;
    добывать средства на жизнь не совсем честно - to * on one's name /one's reputation/ жить за счет былых заслуг (off) жить на чей-л. счет;
    жить с чего-л., за счет чего-л. - to * off one's parents быть на иждивении родителей - to * off the land жить с земли, с огорода и т. п.;
    питаться овощами, травами и т. п. (возвышенно) осуществлять, воплощать - he *d his beliefs он жил в соответствии со своими убеждениями - he *d a lie он лгал всю жизнь (with) жить (с кем-л.) ;
    сожительствовать;
    мириться( с чем-л.) ;
    терпеть - he had to * with an unpleasant situation ему пришлось мириться с неприятной ситуацией /приспосабливаться к неловкому положению/ - I don't enjoy the pain but I can * with it боль меня беспокоит, но терпеть ее можно > to * and let * жить и давать жить другим > * and learn! век живи - век учись! > to * it up прожигать жизнь живой - * cattle живой скот - * glacier (геология) живой ледник;
    ледник, дающий айсберги - * target( военное) живая цель - * abatis( военное) живая засека, завал - * weight( сельскохозяйственное) живой вес( о скоте) горящий, непогасший - * coals горящие угли - a * cigar burnt a hole in the carpet непогашенная сигара прожгла дыру в ковре действующий;
    неиспользованный;
    не взорвавшийся;
    заряженный - * match неиспользованная спичка - * shell( военное) снаряженный снаряд - * ammunition( военное) боевые патроны или снаряды - * round( военное) боевой патрон (электротехника) находящийся под напряжением - * circuit цепь под напряжением - * rail контактный рельс живой, энергичный, деятельный, полный сил актуальный, жизненный, важный - * question животрепещущий вопрос настоящий, реальный, невыдуманный - a real * burglar настоящий живой вор-взломщик - * steam-engine настоящий /всамделишный, неигрушечный/ паровоз проточный( о воде) чистый (о воздухе) яркий, нетусклый (о цвете) - * colours живые /сочные/ тона (полиграфия) подлежащий набору - * copy рукопись в набор преим. (горное) естественный, нетронутый;
    натуральный - * ore рудное месторождение( не разработанное) ;
    рудная порода (спортивное) находящийся в игре (о мяче) (радиотехника) (телевидение) (театроведение) передающийся непосредственно в эфир;
    транслируемый с места действия (о концерте, спектакле и т. п.) ;
    прямой( о передаче) - * broadcast прямой репортаж;
    прямая передача - * coverage прямая телепередача( конференции, матча и т. п.) - * recording запись по трансляции - * theatre настоящий театр, сцена( в противоп. кино- и телефильмам) - to perform before a * audience играть спектакль перед публикой (в противоп. кино- или фотокамере) непосредственно, прямо - to broadcast the game * транслировать игру с поля( без записи на пленку и т. п.) - the contest is brought to you * from... вы смотрите состязание, которое мы передаем прямо из... ~ up to жить согласно( принципам и т. п.) ;
    быть достойным( чего-л.) ;
    as I live by bread!, as I live and breathe! честное слово! ~ up to жить согласно (принципам и т. п.) ;
    быть достойным (чего-л.) ;
    as I live by bread!, as I live and breathe! честное слово! live горящий, непогасший;
    live coals горящие угли ~ готовый к печати ~ действующий;
    невзорвавшийся, боевой (о патроне и т. п.) ~ живой, деятельный, энергичный, полный сил ~ живой ~ жизненный;
    реальный;
    животрепещущий;
    live issue актуальный вопрос ~ жить ~ жить;
    существовать;
    обитать;
    to live in a small way жить скромно ~ радио, тлв. передающийся непосредственно с места действия (без предварительной записи на пленку или киноленту) ~ переменный, меняющийся (о нагрузке) ~ эл. под напряжением ~ существовать ~ энергичный ~ яркий, нетусклый (о цвете) to ~ it up прожигать жизнь;
    live and learn! = век живи, век учись! live горящий, непогасший;
    live coals горящие угли ~ down загладить, искупить (своим поведением, образом жизни) ~ in иметь квартиру по месту службы ~ жить;
    существовать;
    обитать;
    to live in a small way жить скромно ~ жизненный;
    реальный;
    животрепещущий;
    live issue актуальный вопрос to ~ it up прожигать жизнь;
    live and learn! = век живи, век учись! ~ off жить за счет (чего-л.;
    кого-л.) ;
    to live off the soil жить на доходы с земли ~ off жить за счет (чего-л.;
    кого-л.) ;
    to live off the soil жить на доходы с земли to ~ on air не иметь средств к существованию to ~ on one's salary жить на жалованье;
    to live on bread and water питаться хлебом и водой to ~ on one's salary жить на жалованье;
    to live on bread and water питаться хлебом и водой to ~ on others жить на чужие средства ~ out иметь квартиру отдельно от места службы ~ out пережить ~ out прожить, протянуть( о больном) a ~ program репортаж с места событий ~ through пережить to ~ to be old (seventy, eighty, etc.) дожить до старости (до семидесяти, восьмидесяти и т. д) to ~ to see (smth.) дожить (до чего-л.) ~ up to быть достойным ~ up to жить согласно (принципам и т. п.) ;
    быть достойным (чего-л.) ;
    as I live by bread!, as I live and breathe! честное слово! ~ up to жить согласно принципам ~ weight живой вес ~ wire энергичный человек, огонь to ~ within (above, beyond) one's income (или means) жить (не) по средствам

    Большой англо-русский и русско-английский словарь > live

  • 13 Langley, Samuel Pierpont

    SUBJECT AREA: Aerospace
    [br]
    b. 22 August 1834 Roxbury, Massachusetts, USA
    d. 27 February 1906 Aiken, South Carolina, USA
    [br]
    American scientist who built an unsuccessful aeroplane in 1903, just before the success of the Wright brothers.
    [br]
    Professor Langley was a distinguished mathematician and astronomer who became Secretary of the Smithsonian Institution (US National Museum) in 1887. He was also interested in aviation and embarked on a programme of experiments with a whirling arm to test wings and with a series of free-flying models. In 1896 one of his steam-powered models made a flight of 4,199 ft (1,280 m): this led to a grant from the Government to subsidize the construction of a manned aeroplane. Langley commissioned Stephen M. Balzer, an automobile engine designer, to build a lightweight aero-engine and appointed his assistant, Charles M.Manly, to oversee the project. After many variations, including rotary and radical designs, two versions of the Balzer-Manly engine were produced, one quarter size and one full size. In August 1903 the small engine powered a model which thus became the first petrol-engined aeroplane to fly. Langley designed his full-size aeroplane (which he called an Aerodrome) with tandem wings and a cruciform tail unit. The Balzer-Manly engine drove two pusher propellers. Manly was to be the pilot as Langley was now almost 70 years old. Most early aviators tested their machines by making tentative hops, but Langley decided to launch his Aerodrome by catapult from the roof of a houseboat on the Potomac river. Two attempts were made and on both occasions the Aerodrome crashed into the river: catapult problems and perhaps a structural weakness were to blame. The second crash occurred on 8 December 1903 and it is ironic that the Wright brothers, with limited funds and no Government support, successfully achieved a manned flight just nine days later. Langley was heartbroken. After his death there followed a strange affair in 1914 when Glenn Curtiss took Langley's Aerodrome, modified it, and tried to prove that but for the faulty catapult it would have flown before the Wrights' Flyer. A brief flight was made with floats instead of the catapult, and it flew rather better after more extensive modifications and a new engine.
    [br]
    Bibliography
    1897, Langley Memoir on Mechanical Flight, Part 1, Washington, DC: Smithsonian Institution; 1911, Part 2.
    Further Reading
    J.Gordon Vaeth, 1966, Langley: Man of Science and Flight, New York (biography).
    Charles H. Gibbs-Smith, 1985, Aviation, London (includes an analysis of Langley's work).
    Tom D.Crouch, 1981, A Dream of Wings, New York.
    Robert B.Meyer Jr (ed.), 1971, Langley's Aero Engine of 1903, Washington, DC: Smithsonian Annals of Flight, No. 6 (provides details about the engine).
    JDS

    Biographical history of technology > Langley, Samuel Pierpont

  • 14 Buddle, John

    [br]
    b. 15 November 1773 Kyloe, Northumberland, England
    d. 10 October 1843 Wallsend, Northumberland, England
    [br]
    English colliery inspector, manager and agent.
    [br]
    Buddle was educated by his father, a former schoolteacher who was from 1781 the first inspector and manager of the new Wallsend colliery. When his father died in 1806, John Buddle assumed full responsibility at the Wallsend colliery, and he remained as inspector and manager there until 1819, when he was appointed as colliery agent to the third Marquis of Londonderry. In this position, besides managing colliery business, he acted as an entrepreneur, gaining political influence and organizing colliery owners into fixing prices; Buddle and Londonderry were also responsible for the building of Seaham harbour. Buddle became known as the "King of the Coal Trade", gaining influence throughout the important Northumberland and Durham coalfield.
    Buddle's principal contribution to mining technology was with regard to the improvement of both safety standards and productivity. In 1807 he introduced a steam-driven air pump which extracted air from the top of the upcast shaft. Two years later, he drew up plans which divided the coalface into compartments; this enabled nearly the whole seam to be exploited. The system of compound ventilation greatly reduced the danger of explosions: the incoming air was divided into two currents, and since each current passed through only half the underground area, the air was less heavily contaminated with gas.
    In 1813 Buddle presented an important paper on his method for mine ventilation to the Sunderland Society for Preventing Accidents in Coal-mines, which had been established in that year following a major colliery explosion. He emphasized the need for satisfactory underground lighting, which influenced the development of safety-lamps, and assisted actively in the experiments with Humphrey Davy's lamp which he was one of the first mine managers to introduce. Another mine accident, a sudden flood, prompted him to maintain a systematic record of mine-workings which ultimately resulted in the establishment of the Mining Record Office.
    [br]
    Bibliography
    1838, Transactions of the Natural History Society of Northumberland 11, pp. 309–36 (Buddle's paper on keeping records of underground workings).
    Further Reading
    R.L.Galloway, 1882, A History of Coalmining in Great Britain, London (deals extensively with Buddle's underground devices).
    R.W.Sturgess, 1975, Aristocrat in Business: The Third Marquis of Londonderry as
    Coalowner and Portbuilder, Durham: Durham County Local History Society (concentrates on Buddle's work after 1819).
    C.E.Hiskey, 1978, John Buddle 1773–1843, Agent and Entrepreneur in the Northeast
    Coal Trade, unpublished MLitt thesis, Durham University (a very detailed study).
    WK

    Biographical history of technology > Buddle, John

  • 15 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 16 Giffard, Baptiste Henry Jacques (Henri)

    [br]
    b. 8 February 1825 Paris, France
    d. 14 April 1882 Paris, France
    [br]
    French pioneer of airships and balloons, inventor of an injector for steam-boiler feedwater.
    [br]
    Giffard entered the works of the Western Railway of France at the age of 16 but became absorbed by the problem of steam-powered aerial navigation. He proposed a steam-powered helicopter in 1847, but he then turned his attention to an airship. He designed a lightweight coke-burning, single-cylinder steam engine and boiler which produced just over 3 hp (2.2 kW) and mounted it below a cigar-shaped gas bag 44 m (144 ft) in length. A triangular rudder was fitted at the rear to control the direction of flight. On 24 September 1852 Giffard took off from Paris and, at a steady 8 km/h (5 mph), he travelled 28 km (17 miles) to Trappes. This can be claimed to be the first steerable lighter-than-air craft, but with a top speed of only 8 km/h (5 mph) even a modest headwind would have reduced the forward speed to nil (or even negative). Giffard built a second airship, which crashed in 1855, slightly injuring Giffard and his companion; a third airship was planned with a very large gas bag in order to lift the inherently heavy steam engine and boiler, but this was never built. His airships were inflated by coal gas and refusal by the gas company to provide further supplies brought these promising experiments to a premature end.
    As a draughtsman Giffard had the opportunity to travel on locomotives and he observed the inadequacies of the feed pumps then used to supply boiler feedwater. To overcome these problems he invented the injector with its series of three cones: in the first cone (convergent), steam at or below boiler pressure becomes a high-velocity jet; in the second (also convergent), it combines with feedwater to condense and impart high velocity to it; and in the third (divergent), that velocity is converted into pressure sufficient to overcome the pressure of steam in the boiler. The injector, patented by Giffard, was quickly adopted by railways everywhere, and the royalties provided him with funds to finance further experiments in aviation. These took the form of tethered hydrogen-inflated balloons of successively larger size. At the Paris Exposition of 1878 one of these balloons carried fifty-two passengers on each tethered "flight". The height of the balloon was controlled by a cable attached to a huge steam-powered winch, and by the end of the fair 1,033 ascents had been made and 35,000 passengers had seen Paris from the air. This, and similar balloons, greatly widened the public's interest in aeronautics. Sadly, after becoming blind, Giffard committed suicide; however, he died a rich man and bequeathed large sums of money to the State for humanitarian an scientific purposes.
    [br]
    Principal Honours and Distinctions
    Croix de la Légion d'honneur 1863.
    Bibliography
    1860, Notice théorique et pratique sur l'injecteur automoteur.
    1870, Description du premier aérostat à vapeur.
    Further Reading
    Dictionnaire de biographie française.
    Gaston Tissandier, 1872, Les Ballons dirigeables, Paris.
    —1878, Le Grand ballon captif à vapeur de M. Henri Giffard, Paris.
    W.de Fonvielle, 1882, Les Ballons dirigeables à vapeur de H.Giffard, Paris. Giffard is covered in most books on balloons or airships, e.g.: Basil Clarke, 1961, The History of Airships, London. L.T.C.Rolt, 1966, The Aeronauts, London.
    Ian McNeill (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, pp. 575 and 614.
    J.T.Hodgson and C.S.Lake, 1954, Locomotive Management, Tothill Press, p. 100.
    PJGR / JDS

    Biographical history of technology > Giffard, Baptiste Henry Jacques (Henri)

  • 17 Perkins, Jacob

    [br]
    b. 9 July 1766 Newburyport, Massachusetts, USA
    d. 30 July 1849 London, England
    [br]
    American inventor of a nail-making machine and a method of printing banknotes, investigator of the use of steam at very high pressures.
    [br]
    Perkins's occupation was that of a gold-and silversmith; while he does not seem to have followed this after 1800, however, it gave him the skills in working metals which he would continue to employ in his inventions. He had been working in America for four years before he patented his nail-making machine in 1796. At the time there was a great shortage of nails because only hand-forged ones were available. By 1800, other people had followed his example and produced automatic nail-making machines, but in 1811 Perkins' improved machines were introduced to England by J.C. Dyer. Eventually Perkins had twenty-one American patents for a range of inventions in his name.
    In 1799 Perkins invented a system of engraving steel plates for printing banknotes, which became the foundation of modern siderographic work. It discouraged forging and was adopted by many banking houses, including the Federal Government when the Second United States Bank was inaugurated in 1816. This led Perkins to move to Philadelphia. In the intervening years, Perkins had improved his nail-making machine, invented a machine for graining morocco leather in 1809, a fire-engine in 1812, a letter-lock for bank vaults and improved methods of rolling out spoons in 1813, and improved armament and equipment for naval ships from 1812 to 1815.
    It was in Philadelphia that Perkins became interested in the steam engine, when he met Oliver Evans, who had pioneered the use of high-pressure steam. He became a member of the American Philosophical Society and conducted experiments on the compressibility of water before a committee of that society. Perkins claimed to have liquified air during his experiments in 1822 and, if so, was the real discoverer of the liquification of gases. In 1819 he came to England to demonstrate his forgery-proof system of printing banknotes, but the Bank of England was the only one which did not adopt his system.
    While in London, Perkins began to experiment with the highest steam pressures used up to that time and in 1822 took out his first of nineteen British patents. This was followed by another in 1823 for a 10 hp (7.5 kW) engine with only 2 in. (51 mm) bore, 12 in. (305 mm) stroke but a pressure of 500 psi (35 kg/cm2), for which he claimed exceptional economy. After 1826, Perkins abandoned his drum boiler for iron tubes and steam pressures of 1,500 psi (105 kg/cm2), but the materials would not withstand such pressures or temperatures for long. It was in that same year that he patented a form of uniflow cylinder that was later taken up by L.J. Todd. One of his engines ran for five days, continuously pumping water at St Katherine's docks, but Perkins could not raise more finance to continue his experiments.
    In 1823 one his high-pressure hot-water systems was installed to heat the Duke of Wellington's house at Stratfield Saye and it acquired a considerable vogue, being used by Sir John Soane, among others. In 1834 Perkins patented a compression ice-making apparatus, but it did not succeed commercially because ice was imported more cheaply from Norway as ballast for sailing ships. Perkins was often dubbed "the American inventor" because his inquisitive personality allied to his inventive ingenuity enabled him to solve so many mechanical challenges.
    [br]
    Further Reading
    Historical Society of Pennsylvania, 1943, biography which appeared previously as a shortened version in the Transactions of the Newcomen Society 24.
    D.Bathe and G.Bathe, 1943–5, "The contribution of Jacob Perkins to science and engineering", Transactions of the Newcomen Society 24.
    D.S.L.Cardwell, 1971, From Watt to Clausius. The Rise of Thermodynamics in the Early Industrial Age, London: Heinemann (includes comments on the importance of Perkins's steam engine).
    A.F.Dufton, 1940–1, "Early application of engineering to warming of buildings", Transactions of the Newcomen Society 21 (includes a note on Perkins's application of a high-pressure hot-water heating system).
    RLH

    Biographical history of technology > Perkins, Jacob

  • 18 Gurney, Sir Goldsworthy

    [br]
    b. 14 February 1793 Treator, near Padstow, Cornwall, England
    d. 28 February 1875 Reeds, near Bude, Cornwall, England
    [br]
    English pioneer of steam road transport.
    [br]
    Educated at Truro Grammar School, he then studied under Dr Avery at Wadebridge to become a doctor of medicine. He settled as a surgeon in Wadebridge, spending his leisure time in building an organ and in the study of chemistry and mechanical science. He married Elizabeth Symons in 1814, and in 1820 moved with his wife to London. He delivered a course of lectures at the Surrey Institution on the elements of chemical science, attended by, amongst others, the young Michael Faraday. While there, Gurney made his first invention, the oxyhydrogen blowpipe. For this he received the Gold Medal of the Society of Arts. He experimented with lime and magnesia for the production of an illuminant for lighthouses with some success. He invented a musical instrument of glasses played like a piano.
    In 1823 he started experiments related to steam and locomotion which necessitated taking a partner in to his medical practice, from which he resigned shortly after. His objective was to produce a steam-driven vehicle to run on common roads. His invention of the steam-jet of blast greatly improved the performance of the steam engine. In 1827 he took his steam carriage to Cyfarthfa at the request of Mr Crawshaw, and while there applied his steam-jet to the blast furnaces, greatly improving their performance in the manufacture of iron. Much of the success of George Stephenson's steam engine, the Rocket was due to Gurney's steam blast.
    In July 1829 Gurney made a historic trip with his road locomotive. This was from London to Bath and back, which was accomplished at a speed of 18 mph (29 km/h) and was made at the instigation of the Quartermaster-General of the Army. So successful was the carriage that Sir Charles Dance started to run a regular service with it between Gloucester and Cheltenham. This ran for three months without accident, until Parliament introduced prohibitive taxation on all self-propelled vehicles. A House of Commons committee proposed that these should be abolished as inhibiting progress, but this was not done. Sir Goldsworthy petitioned Parliament on the harm being done to him, but nothing was done and the coming of the railways put the matter beyond consideration. He devoted his time to finding other uses for the steam-jet: it was used for extinguishing fires in coal-mines, some of which had been burning for many years; he developed a stove for the production of gas from oil and other fatty substances, intended for lighthouses; he was responsible for the heating and the lighting of both the old and the new Houses of Parliament. His evidence after a colliery explosion resulted in an Act of Parliament requiring all mines to have two shafts. He was knighted in 1863, the same year that he suffered a stroke which incapacitated him. He retired to his house at Reeds, near Bude, where he was looked after by his daughter, Anna.
    [br]
    Principal Honours and Distinctions
    Knighted 1863. Society of Arts Gold Medal.
    IMcN

    Biographical history of technology > Gurney, Sir Goldsworthy

  • 19 Brotan, Johann

    [br]
    b. 24 June 1843 Kattau, Bohemia (now in the Czech Republic)
    d. 20 November 1923 Vienna, Austria
    [br]
    Czech engineer, pioneer of the watertube firebox for steam locomotive boilers.
    [br]
    Brotan, who was Chief Engineer of the main workshops of the Royal Austrian State Railways at Gmund, found that locomotive inner fireboxes of the usual type were both expensive, because the copper from which they were made had to be imported, and short-lived, because of corrosion resulting from the use of coal with high sulphur content. He designed a firebox of which the side and rear walls comprised rows of vertical watertubes, expanded at their lower ends into a tubular foundation ring and at the top into a longitudinal water/steam drum. This projected forward above the boiler barrel (which was of the usual firetube type, though of small diameter), to which it was connected. Copper plates were eliminated, as were firebox stays.
    The first boiler to incorporate a Brotan firebox was built at Gmund under the inventor's supervision and replaced the earlier boiler of a 0−6−0 in 1901. The increased radiantly heated surface was found to produce a boiler with very good steaming qualities, while the working pressure too could be increased, with consequent fuel economies. Further locomotives in Austria and, experimentally, elsewhere were equipped with Brotan boilers.
    Disadvantages of the boiler were the necessity of keeping the tubes clear of scale, and a degree of structural weakness. The Swiss engineer E. Deffner improved the latter aspect by eliminating the forward extension of the water/steam drum, replacing it with a large-diameter boiler barrel with the rear section of tapered wagon-top type so that the front of the water/steam drum could be joined directly to the rear tubeplate. The first locomotives to be fitted with this Brotan-Deffner boiler were two 4−6−0s for the Swiss Federal Railways in 1908 and showed very favourable results. However, steam locomotive development ceased in Switzerland a few years later in favour of electrification, but boilers of the Brotan-Deffner type and further developments of it were used in many other European countries, notably Hungary, where more than 1,000 were built. They were also used experimentally in the USA: for instance, Samuel Vauclain, as President of Baldwin Locomotive Works, sent his senior design engineer to study Hungarian experience and then had a high-powered 4−8−0 built with a watertube firebox. On stationary test this produced the very high figure of 4,515 ihp (3,370 kW), but further development work was frustrated by the trade depression commencing in 1929. In France, Gaston du Bousquet had obtained good results from experimental installations of Brotan-Deffner-type boilers, and incorporated one into one of his high-powered 4−6−4s of 1910. Experiments were terminated suddenly by his death, followed by the First World War, but thirty-five years later André Chapelon proposed using a watertube firebox to obtain the high pressure needed for a triple-expansion, high-powered, steam locomotive, development of which was overtaken by electrification.
    [br]
    Further Reading
    G.Szontagh, 1991, "Brotan and Brotan-Deffner type fireboxes and boilers applied to steam locomotives", Transactions of the Newcomen Society 62 (an authoritative account of Brotan boilers).
    PJGR

    Biographical history of technology > Brotan, Johann

  • 20 Stevens, John

    [br]
    b. 1749 New York, New York, USA
    d. 6 March 1838 Hoboken, New Jersey, USA
    [br]
    American pioneer of steamboats and railways.
    [br]
    Stevens, a wealthy landowner with an estate at Hoboken on the Hudson River, had his attention drawn to the steamboat of John Fitch in 1786, and thenceforth devoted much of his time and fortune to developing steamboats and mechanical transport. He also had political influence and it was at his instance that Congress in 1790 passed an Act establishing the first patent laws in the USA. The following year Stevens was one of the first recipients of a US patent. This referred to multi-tubular boilers, of both watertube and firetube types, and antedated by many years the work of both Henry Booth and Marc Seguin on the latter.
    A steamboat built in 1798 by John Stevens, Nicholas J.Roosevelt and Stevens's brother-in-law, Robert R.Livingston, in association was unsuccessful, nor was Stevens satisfied with a boat built in 1802 in which a simple rotary steam-en-gine was mounted on the same shaft as a screw propeller. However, although others had experimented earlier with screw propellers, when John Stevens had the Little Juliana built in 1804 he produced the first practical screw steamboat. Steam at 50 psi (3.5 kg/cm2) pressure was supplied by a watertube boiler to a single-cylinder engine which drove two contra-rotating shafts, upon each of which was mounted a screw propeller. This little boat, less than 25 ft (7.6 m) long, was taken backwards and forwards across the Hudson River by two of Stevens's sons, one of whom, R.L. Stevens, was to help his father with many subsequent experiments. The boat, however, was ahead of its time, and steamships were to be driven by paddle wheels until the late 1830s.
    In 1807 John Stevens declined an invitation to join with Robert Fulton and Robert R.Living-ston in their development work, which culminated in successful operation of the PS Clermont that summer; in 1808, however, he launched his own paddle steamer, the Phoenix. But Fulton and Livingston had obtained an effective monopoly of steamer operation on the Hudson and, unable to reach agreement with them, Stevens sent Phoenix to Philadelphia to operate on the Delaware River. The intervening voyage over 150 miles (240 km) of open sea made Phoenix the first ocean-going steamer.
    From about 1810 John Stevens turned his attention to the possibilities of railways. He was at first considered a visionary, but in 1815, at his instance, the New Jersey Assembly created a company to build a railway between the Delaware and Raritan Rivers. It was the first railway charter granted in the USA, although the line it authorized remained unbuilt. To demonstrate the feasibility of the steam locomotive, Stevens built an experimental locomotive in 1825, at the age of 76. With flangeless wheels, guide rollers and rack-and-pinion drive, it ran on a circular track at his Hoboken home; it was the first steam locomotive to be built in America.
    [br]
    Bibliography
    1812, Documents Tending to Prove the Superior Advantages of Rail-ways and Steam-carriages over Canal Navigation.
    He took out patents relating to steam-engines in the USA in 1791, 1803, and 1810, and in England, through his son John Cox Stevens, in 1805.
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin (provides technical details of Stevens's boats).
    J.T.Flexner, 1978, Steamboats Come True, Boston: Little, Brown (describes his work in relation to that of other steamboat pioneers).
    J.R.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    Transactions of the Newcomen Society (1927) 7: 114 (discusses tubular boilers).
    J.R.Day and B.G.Wilson, 1957, Unusual Railways, F.Muller (discusses Stevens's locomotive).
    PJGR

    Biographical history of technology > Stevens, John

См. также в других словарях:

  • Chaplin's Patent Distilling Apparatus with Steam Pump — Chaplins patent sea water distilling apparatus. Alexander Chaplin Co. (also known as A.C. and Co., Alex. Chaplin Co.) was an important and highly regarded[1] engineering and manufacturing syndicat …   Wikipedia

  • Steam locomotive — A steam locomotive is a locomotive powered by steam. The term usually refers to its use on railways, but can also refer to a road locomotive such as a traction engine or steamroller.Steam locomotives dominated rail traction from the mid 19th… …   Wikipedia

  • Steam power during the Industrial Revolution — See also the section on steam power in the main Industrial Revolution article During the Industrial Revolution, steam power replaced water power and muscle power (which often came from horses) as the primary source of power in use in industry.… …   Wikipedia

  • Steam digester — [ Denis Papin s steam digester (1679)] The steam digester (or bone digester, and also known as Papin’s digester) is a high pressure cooker invented by French physicist Denis Papin in 1679. It is a device for extracting fats from bones in a high… …   Wikipedia

  • Steam cannon — Leonardo da Vinci first proposed the idea of a steam powered cannon that would launch a projectile using only heat and water. Some sources say Archimedes was the original source of the idea.The device would consist of a large metal tube,… …   Wikipedia

  • Timeline of steam power — See Steam engine, Steam power during the Industrial Revolution. Steam power developed slowly over a period of several hundred years, progressing through expensive and fairly limited devices in the early 1600s, to useful pumps for mining in 1700,… …   Wikipedia

  • Aerial Steam Carriage — The Aerial Steam Carriage, also named Ariel, was a flying machine patented in 1842 that was supposed to carry passengers into the air. It was, in practice, incapable of flight since it had insufficient power from its heavy steam engine to fly. A… …   Wikipedia

  • History of the steam engine — This article primarily deals with the history of the reciprocating type steam engine. The parallel development of turbine type engines is described in the steam turbine article. The history of the steam engine stretches back as far as the first… …   Wikipedia

  • High pressure steam locomotive — A high pressure steam locomotive is a steam locomotive with a boiler that operates at pressures well above what would be considered normal. In the later years of steam, boiler pressures were typically 200 to 250 PSI (1.4 to 1.7 MPa). High… …   Wikipedia

  • Naval tactics in the Age of Steam — The development of the steam ironclad firing explosive shells in the mid 19th century rendered sailing tactics obsolete. New tactics were developed for the big gun Dreadnought battleships. The mine, torpedo, submarine and aircraft posed new… …   Wikipedia

  • Uniflow steam engine — The uniflow type of steam engine uses steam that flows in one direction only in each half of the cylinder. Thermal efficiency is increased in the compound and multiple expansion types of steam engine by separating expansion into steps in separate …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»